
1 
 

FORMAL DESCRIPTION OF A SOFTWARE MACHINE 

 

To obtain a formalism focused on the analysis of the basic structures of an 

algorithmic language, let us consider the structural components of some abstract 

language (Fig. 1). 

The entire set of tools of the instrumental system forms a software machine 

(PM), which contains as part of its tools: 

- some model of data representation M, mapped to the space of the computer’s 

RAM and external memory, 

- constants K, corresponding to the data representation model, 

- syntactic constructions of the system of operations A on data structures, used 

by the program machine to perform the strictly applied part of the program’s 

functioning, 

- a set of syntactic constructions F that make up the general syntax of the 

language constructs of the instrumental system related to controlling the sequence 

of work of program operators (control syntactic constructions), 

- a control system for the interpretation of PM constructions, implementing 

the basic algorithmic formalism of the language system, 

- interpretation of I syntactic constructions of the applied component of the toolkit. 

Each of the listed components has its own internal structure and a rigid 

connection with the other components. The complete set of components M, K, A, 

Ф, F, I is a formal PM implemented by software in an algorithmic language. 

The TL program engine of the L language is as follows 

set of algebraic systems: 

        T  <  M , K ,  A ,  F ,  Ф ,  I  >          
L L L L L L L 
 . 

An algebraic system M is an algebra of memory elements with relations 

defined on the set of its elements. 

Memory elements are fragments of RAM used in a particular language for a 

variety of basic and derived data types, with corresponding memory addresses. So, 

for example, for languages like C or Pascal, the basic elements of M are 

addressable memory areas used for objects of integer, real and character types, 

from which more complex derived structures are synthesized, which also have a 

single start address of the corresponding memory area. 

K is an algebraic system of constants in a programming language. This system is 

rigidly connected to the M system and corresponds to the applied component of the 

PM data model of the algorithmic language. 

The syntactic constructs of any algorithmic language contain some control 

constructs for organizing the algorithmic scheme of the program, as well as 

constructs used to record operations on basic typed objects of the language. To 

study these constructions in the program machine, the algebraic systems F and A 

are used, respectively. For universal programming languages, system F includes 

syntactic constructions such as if-then-else, do-while, case, etc., system A contains 

operations for numeric and string data types, for example +, *, /, =, etc. 
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Fig.1. Structural components of the toolkit 

 

Algebraic systems F and I are intended to describe the interpretation of the 

corresponding syntactic constructions studied in F and A. The interpretation system 

of some PL is a description of the semantics (meaning) of its syntactic 

constructions in some simpler system of commands, operating with concepts that 

are obviously more primitive than the concepts of this language. 

There are two different ways to construct an interpretation system. The first of 

them is focused on the synthesis of interpretation specialized for a specific 

algorithmic language. If there is an adequate interpretation system for each 

language, comparison of various language constructions should be preceded by 

comparison of interpretation systems oriented to different languages. The second 

way is to construct an interpretation suitable for language languages of various 

functional families. The construction of such a system is a complex task, but if it is 

solved positively, further comparison of language structures is greatly facilitated. 

Let us consider in more detail the formal components of PM. 

 

Algebraic system of memory elements 

The algebraic system ML of memory elements is the following system of sets: 
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ML = < Am,m, Rm >, 

where a pair of sets <Am,m> - algebra of memory elements, in which Am = { m1, 

m2, ..., mi, ..., mn } - set of addresses of basic and derived memory elements mi, 

corresponding to certain data types,m= {1, ...,k} - algebra signature, 

whereiare operations on memory elements for the synthesis of derived 

elements, Rm = {r1, ..., rt } - a set of relations on memory elements reflecting the 

memory structure of the data model of the algorithmic language L. 

The elements of the set Am represent elementary (basic) and complex 

(derived) memory elements for the corresponding types used in the language. As a 

result, each of the elements can have its own rank, which characterizes the 

complexity of the structure of the memory element. A rank is assigned to each of 

the elements. It represents an integer one greater than the rank of the most complex 

element included in its structure. Memory elements corresponding to basic data 

types have a rank of 0. The rank is indicated by the superscript of the element. 

However, if this does not lead to confusion, the rank index will be omitted from 

now on. 

For most PMs you can use the signaturem ={ + }, in which the only operation 

“+” corresponds to the synthesis of two memory elements into a single derived 

element of a higher rank. 

Using the synthesis operation, it is possible to describe rather complex 

compositions of memory elements (Fig. 2). In the above figure, the upper index 

means the rank of a memory element, the lower index means the serial number of 

the element in the set of elements of a certain rank. 

Algebraic relations between memory elements in this case can be expressed 

by the following equalities: 

m  =  m  +  m ;   m  =  m  +  m ;  ...  m  =  m  +  m ;

m  m  +  m ;    m  =  m  +  m ;  ...  m  =  m  +  m   +  m ;
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or in more detail through basic memory elements, for example: 

m  =  m  +  m  +  m  
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Fig. 2. Graphical representation of algebraic composition 
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The set of relations over memory elements consists, as a rule, of binary 

relations and makes it possible to describe various situations of mutual intersection 

of memory areas, which very significantly affects the properties of the operations 

of the algebraic system F. We can give examples of the most common relations 

used in algebraic systems of memory elements for various PLs : 

Rm = { =m,m, >m,m,m,m} . 

In what follows, for convenience of presentation, the lower index of the 

relation m, characterizing its belonging to the algebraic system of memory 

elements, will be omitted. For the given set of relations, the first two correspond to 

the equality and inequality of two memory elements based on the coincidence of 

their constituent elements. The ">" relation indicates the strict inclusion of all 

components of the memory element specified by the second member of the relation 

in the memory element specified by the first member. A complete relationship 

table includes the following elements: 

ma mb - memory element mb is equal to or less than element ma; 

ma mb - elements ma and mb have common components; 

ma mb - elements ma and mb do not have common components; 

ma = mb - relation of structural equivalence of types; 

ma mb is the relation of non-equivalence of memory elements. 

Memory elements can represent not only space for storing any data, but also 

space for storing program statements. To distinguish such memory elements, the 

following constructs can be respectively used: m(x) and m(f), where x is some 

variable or other data-related object and f is some program statement. This notation 

makes it possible to describe more complex compositions of memory structures, 

for example, lists, stacks or queues. 

Let's give an example of a formal list representation. Let some singly linked 

list ms contain n elements. Then it can be represented by the following expression: 

ms = m1 ( x1 , m2 ) + m2 ( x2, m3 ) + ... + ( xi, mi+1) + ...+ mn ( xn, 0 ). 

This expression uses the "," operation, which is a synonym for the composition 

operation "+". The synonym is used to explicitly highlight different levels of 

composition in the list, since the operations of including and excluding list 

elements are operations of a higher level than the connection ( xi, mi+1) of the 

stored element xi with a reference constant to the next element. 

Note that the proposed representation of memory elements has one more 

additional positive quality. It consists in the identical representation of memory 

elements of different types, but differing only in the way of operating with them. 

So for example, the representation of queue mq and stack mc would look 

equivalent: 

mq = mc = m1 ( x1 ) + m2 ( x2 ) + ... + ( xi ) + ...+ mn ( xn ). 

This representation is fully justified if the stack and queue are implemented not 

through a list construct, but through an array. The type of the derived data, 

distinguished by the subscript, is determined by the operations of placing (fct , fqt ) 

and extracting ( fcp , fqp ) elements: 
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fct(mx, mc) = mx + mc; fqt(mx, mq) = mx + mq; 

fcp ( mc = m1 ( x1 ) + m2 ( x2 ) + ... + ( xi) + ...+ mn ( xn )) = m1; 

fqp ( mq = m1 ( x1 ) + m2 ( x2 ) + ... + ( xi) + ...+ mn ( xn )) = mn . 

Using the algebra of memory elements, you can define more complex 

memory transformation operations, for example, the fp operation of including an 

element in the middle of a list: 

fp ( ms , xx, i ) = m1 ( x1 , m2 ) + m2 ( x2, m3 ) + ... + ( xi, mi+1) + 

mi+1 ( xx, mi+2 ) + ...+ mn ( xn, 0 ), 

where ms = m1 ( x1 , m2 ) + m2 ( x2, m3 ) + ... + ( xi, mi+1) + ...+ mn ( xn, 0 ). 

Arithmetic operations on memory contents, such as addition of elements, can 

be defined in a similar way: 

f+ ( m( x1 ), m( x2 ), m( x3 ) ) = m( x1 = x2 + x3 ). 

Algebraic system of constants 

The algebraic system of constants is an application system of basic data types 

used in a language. Most often, this system is polybasic and includes character 

string algebra, array algebra and formal arithmetic [32,116,117]. 

In the simplest case, an algebraic system of constants is represented by a 

system of sets: 

 
L

  
  

 =  <  ,  ,  R >,  

where <Ak,k> - applied algebra of constants of basic data types, in which Ak = { 

k1, k2, ..., ki, ..., kn } - set of constants,k- many operations

   ...,   ...     
1 2
, , , , ,

j m
such as, for example, addition, multiplication, 

concatenation, as well as operations for constructing constants for derived data 

types. 

One of the important types of operations inToare operations for constructing 

complex constants for derived data types by analogy with the ML system; 

Rk = {r1, r2, …, ri, …, rt} - a set of relations of an applied system, for 

example, formal arithmetic or character string algebra. So, for example, for the 

algebra of character strings, these can be relations of equality, comparison of 

strings by length, and inclusion of one string in another. 

The algebraic system of constants is rigidly connected with the algebra of 

memory elements, and for software machines of some tools it is isomorphic to the 

subalgebra of memory elements. That is, in this case there is a certain subalgebra 

that is of the same type as the algebra of constants and has equivalent properties of 

operations from signature sets. 

Syntactic constructions of the applied operation system 

Algebra AL, used to formally describe within its framework the syntactic 

constructions of the language tools involved in the descriptions of various more or 

less complex calculations over variables and constants of basic and derived data 

types, is based on chains of a certain sublanguage of the language L. These chains 

are simple expressions, not directly affecting the main algorithm of the program. 

As operations for this algebraic system, a system of substitutions is used 

instead of non-terminal chain symbols - terminal literal constructions. 
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For example, for arithmetic expressions, the operations of addition, 

subtraction, multiplication and division can be defined with the following syntax, 

similar to the syntax of the Lisp language [13,118]: 

(ADD List1 List2), (SUB List1 List2), 

(MUL List1 List2), (DIV List1 List2) . 

For these operations, corresponding program terms can be defined: 

fadd (x1, x2 ), fsub (x1, x2 ), fmul (x1, x2 ), fdiv (x1, x2 ). 

Three-argument composition operationcan be represented by the following 

expression: 

fx: fx (x1, ..., xi, ..., xn), fy: fy (y1, ..., yj, ..., ym), 

 ( fy, i, fx ) = fx ( x1, ..., fy, ..., xn ) . 

We will further call such a composition substitution. For syntactic constructions of 

software tools, it is important and allows the formation of complex syntactic 

expressions, for example: 

(SETQ X (ADD (MUL YZ ) X ), 

which in the form of a program term looks like this: 

fsetq ( x, fadd ( fmul ( y, z), x )) . 

It is easy to see that in this expression the substitution composition operation is 

used twice: 

 (( fmul ( y, z ), 1, fadd ( xi, x) ), 2, fsetq ( x, xj ) ) = 

 ( fadd ( fmul ( y, z), x ), 2, fsetq ( x, xj ) ) = fsetq ( x, fadd ( fmul ( y, z), x )) . 

Control syntactic structures 

Control constructs of an algorithmic language serve to branch the linear 

computational process in order to execute the most complex algorithmic part of the 

programs for which this language is oriented. The corresponding algebraic system 

describes the possible compositions of syntactic constructions of PL or other 

software tools used to specify the structure of the algorithm. It represents the 

following system of sets: 

FL = <Am,m, Rm >, 

where a pair of sets < AF,F> is an algebra of control structures, in which AF = { 

f1, …, fi, .., fn } is a set of command structures described by the generative 

grammar GL of some language L and characterizing the control of calculations in 

the program. Each construction fi can have an arbitrary locality (fi) = n, indicating 

the possibility of performing n substitutions in those places fi that correspond to 

non-terminal symbols of the GL grammar. 

The substitutions themselves are elements of many operationsF, necessary 

for the formation of more complex and more specific programs. So, for example, 

the design 

if x0 then x1 else x2; 

can be represented as 

f1 (x0, x2, x3), (f1) = 3, 

and the construction while x0 do x1 ; How 

f2 (x0, x1), (f2) = 2, 

compound operator 
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Begin x1, ..., xn End; 

as an n-ary construction 

f3 (x1, ..., xn) . 

The RF set consists of binary relations over the control constructions =,,,, 

>, <, having the following meaning: 

= - equivalence of structures, 

- non-equivalence of structures, 

- non-strict inclusion of one construction into another, 

- the opposite relationship to the previous one, 

>, < are strict occurrence relations. 

Depending on the subject of the study, the listed relations may have semantics 

of varying precision. For example, one can consider the equivalence of 

constructions up to their complete syntactic coincidence, up to the functional 

equivalence of their actual interpretation in programs, or up to the preservation of a 

predetermined property by the program. 

Interpretation of syntactic constructions 

Interpretation of syntactic constructions is a way of specifying the semantics 

of constructions through the command system of some simpler PM. Such a 

machine can be, for example, a processor of some computer (special processor) or 

the basic assembler of a computer. 

The advisability of a formal consideration of the interpretation of syntactic 

constructions is determined by the following reasons: 

1) it becomes possible to prove the correctness of the composition of various 

syntactic structures of the language into more complex structures; 

2) it becomes possible to prove the redundancy or sufficiency of a set of 

syntactic constructions of an algorithmic language, as well as the substantive 

integrity of its syntactic system; 

3) strict consideration of the interpretation of constructions leads to 

optimization of the program compilation algorithm by considering injective 

mappings of syntactic constructions into a simpler system of operations, as well as 

equivalent optimizing transformations at the level of the interpreting system 

(program machine); 

4) the equivalence of some complex syntactic structures can be proven 

through interpretive sequences [90,91,92]. 

Just as for syntactic constructions, for the algebraic interpretation system a 

division is introduced into the interpretation of control syntactic constructions and 

the interpretation of the applied system of operations. 

Algebraic systems that describe interpretation have carriers with elements - n-ary 

terms, in which the following types of constructions are used in place of 

arguments: 

m(xi) - address of the first element of the object (variable) with the name xi, 

m(Ii) - address of the operation named Ii, 

m(Stop) - address of the empty operation that completes execution, 

m(i) - transaction addressi. 
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The "Stop" symbol will mean an empty final operation of interpretation of any 

syntactic construction and can be omitted (absorbed) during the sequential 

composition of two interpretive sequences of operations. 

Application Operation System Interpretation 

The applied system of PL operations involves the calculation of expressions 

that are allowed in the area of defining the basic and derived data types of this 

language and do not directly lead to branching of the algorithmic structure of the 

program. This fact indicates the relative independence of the algorithmic structure 

of the program from expressions written within the framework of the applied 

system of operations, which allows us to consider these two components 

separately, exploring the relationships of the corresponding monobasic algebraic 

systems [119,120]. 

The interpretation algebra of the applied IL operations system is the following 

system of sets: 

IL = < AI,I, RI >, 

where AI is a set of microprograms that interpret expressions of the application 

operating system. For this set there is a certain subset AI0AI, called the basis of 

the interpretive system, those. a set of elementary operations from the composition 

of which all other microprograms are obtained. 

For example, for formal arithmetic used in universal algorithmic languages, these 

can be operations “+”, “-” with stack memory operations and unconditional jumps 

attached to them: 

AI = { I+, I-, I v } , 

where I+( m(xi), m(Ijx) ) is the addition of xi with the contents of the adder and 

placing the result in the adder, then proceed to the operation Ijx; I- (m(xi), m(Ijx)) - 

operation of decreasing the contents of the adder by the value xi, Iv(m(xi), m(Ijx)) - 

transferring the contents of the adder to the variable xi. 

A bunch ofconsists of a single sequential composition operation ““ 

interpreting expressions into derived expressions. For example, resetting the adder 

can be described as follows: 

[Iv (m(x), m(I-))][I- (m(x), m(Stop)] = I(m(x),m(Stop)), 

where m(x) is the memory allocated for an arbitrary temporary variable. 

Sequences of compositions allow you to describe the interpretation of 

arithmetic expressions in PL. As an example, we will describe the arithmetic 

expression in C language x = a + b; . 

This expression uses two C operations of different priority: { =, + } or { f=, f+ 

}. In the form of terms of the algebra of constructions of the syntax of an applied 

system of operations, the expression in question can be written in the form f= ( x, 

f+ ( a, b ) ). 

The interpretation of this expression is as follows: 

I (x,a,b) = I m(x),  m(Stop)) I m(a),Stop)=+ + ( (o o 

o oI m(b),Stop) I m(x),Stop)+ v( ( . 
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Interpretation of control syntactic structures 

Control syntactic structures described by the FL system have the following FL 

interpretation system: 

FL = < AF,F, RF > . 

Here AF is a set of interpreting elements (microprograms used to interpret the 

control structures of the tool L),F- a signature consisting of composition 

operations (usually a single operation of sequential composition ““ ), RF - 

relations of equivalence and occurrence on interpretive sequences from AF. 

As in the IL system, for AF there is a basis subset A0AF, which consists of 

compositionally indecomposable elements. 

This basis is the basis both for comparing the functional concepts of different 

language languages, and for studying the feasibility of various language constructs 

within the framework of one algorithmic language. The most powerful bases are 

the famous Post and Turing machines. 

At the same time, to study the properties of constructions in modern 

languages, it makes sense to consider PMs of lower power with more complex 

bases. 

Let us propose one of the bases, which we will call A0T 

A0T = {0,1,2,n,d}, (0) = (1) = (2) = (n) = (d) = 2. 

The functional meaning of the elements of the set A0T is as follows: 

0(m(f),) - execute a sequence of commands located at address m(f), then 

proceed to execute the command; 

1(m(0),) - execute a terminal (application) command located at address 

m(0), then proceed to execute the command; 

2(m(0), m(1)) - if the result sign is greater than zero, proceed to executing 

the commands located at address m(0), if less than or equal to zero - to address 

m(1); 

n(m, m()) - allocate memory m, proceed to execution; 

d(m, m()) - free memory m, go to execution. 

Note that the proposed basis allows you to write down the interpretation of 

various program constructs in any order, since each of the commands included in it 

has a link to the next command as one of its arguments. Moreover, in the case of 

interpreting real program designs, double indexing must be used to identify each 

command. For example, the command
d

1 describes the first occurrence of the 

commanddinto an expression of interpretation of some program fragment. 
 


