
1 
 

INTERRELATION OF FORMAL COMPONENTS 

PROGRAMMING MACHINE 

  

The formal components of the TL system can be considered in various 

combinations as higher-level formalisms. The connection between the components 

can be seen at the level of the structure of the construction of elements of the 

carrier sets of the algebraic systems discussed above. Here is a description of the 

main relationships. 

Relationship between algebras M and K.  

There is a mapping from the set M to the set K, in which K is the domain of 

definition, i.e. Dom(M)=K. Cartesian product MK represents the space of 

possible states of the RAM Q when executing programs compiled using the IS L. A 

more general case is the introduction of multi-sorting for the sets M and K: 

Q=M1K1M2K2...MnKn; 

where Q is a universe consisting of pairs of the form(m  k M K
i

t

j

t

t t
, )   with 

the sort t, which, for example, represents some type of variables and constants, and 

the symbol- set-theoretic operation of union. 

Selected subsets Q, among the elements of which there are no pairs with the 

same first member, represent computer memory states on the set of which 

predicates of pre- and postconditions are considered when proving the correctness 

of the program. 

Relationship between algebras A and F 

Both of these sets describe the syntactic constructions of the language L, 

while the union of the sets A and F describe the complete set of syntactic 

constructions L. According to the definitions made earlier for A and F, these 

algebraic systems do not define the language itself, but only list its functional 

chains indicating the type (number constructions) and locality (number of 

occurrences of non-terminal symbols). For these algebraic systems, it is possible to 

define a general multisorted algebra, the carrier of which will be the union of A and 

F, and the operations will be the corresponding union of the operations of these 

algebras. 

Relationship between algebras I and Ф 

Similar to algebraic systems A and F, systems I and Ф also have functions of 

the same type and can be combined into a single multi-sorted algebra. 

Communication between systems Q, AF,IF 

The connection between these PM components is determined mainly at the 

level of carrier sets. The most important relationships are the following: 

Dom(AF) = M, Ran(A) = I, Ran(F) = Ф, 

Ran(AF) = IF, Dom (IФ) = Q, 

where Dom and Ran mean, respectively, the domain of definition and the range of 

values of the set of elements indicated in brackets. The concepts of domain of 

meaning and domain of definition in this case are not strictly formal, since they 

reflect only the general meaning of the interaction of algebraic systems. More 



2 
 

precisely, these relations exist between the sets that support the corresponding 

algebras. 

The choice of algebraic systems that will be used to analyze constructions 

from L is determined by the problem for which the algebraic formalism is 

supposed to be applied. For example, when studying language constructs to 

optimize programs and study their equivalence, in most cases it is sufficient to 

consider systems M, F, F; to prove the correctness of programs - Q, A, F; to justify 

the functional integrity of PL constructs, systems F, A, F are needed ,I and M. 

To study the processes occurring during the execution of a specific program in 

the language L, it is assumed that instead of some algebraic variables used in the 

constructions of AF, the constants of the set K will be used. 

In this case, the constants are classified as syntax constructions with zero 

locality (fik) = 0, along with variables corresponding to elements from M, and they 

complement the set AU F. In this case, the relation is satisfied 

Dom(S) = Q, where S = AFKM. 

A set of sets P = <Q, S, R>, in which R are relations on Q, is an algebraic system P, 

in which Q, as a set of states of RAM, is the carrier, and S is a set of all possible 

operations (programs), acting as single functions. It should be noted that in the 

general case, the operations of composition of terms in this algebraic system can be 

partial, i.e. not defined everywhere, since not all syntactic constructions can be 

substituted into others in place of variables. 

Thus, for qp, qeQ and snS, the relation sn(qp)=qe can be fulfilled, which 

should be interpreted as “the program sn transfers the state of the RAM qp to the 

state qe as a result of its execution.” 

 Subset of Qp statesQ is called the complete domain of the program sn if for 

each of the elements qpQp program sn guarantees its corresponding mapping into 

any element qeQe, where QeQ. The set Qe is called the complete range of 

values of the program. 

In practice, in most cases, some subsets of Qp* are consideredQp and 

Qe*Qe, carrying the most informative fragment of the mapping sn, necessary to 

perform the target function of the program formulated by the programmer. 

Logical predicates Pp and Pe that take the value “true” on the domains of 

definitions Qp* and Qe* are usually called pre- and postconditions of the program 

sn, respectively. Moreover, for any postcondition Pe' of interest to the program 

researcher, one of the important concepts is the weakest precondition Pp' for this 

postcondition. It is defined as the weakest condition to which it is sufficient to 

subordinate the initial state in order for the execution of the program sn to 

terminate and produce a state satisfying Pe'. 

 

 

Algebraic properties of program machine elements 

 

The elements of the software machine of any tool are algorithmic algebraic 

systems. Each of these systems has its own carrier set, signature, and set of 



3 
 

relationships. In this case, the properties of the algebraic system are the properties 

of signature operations and the properties of relations. 

The set of properties of the software machine completely determines the 

specifics of the software tool. For example, algorithmic languages that have 

isomorphic programming engines are functionally equivalent. We call systems of 

mappings of program machines into each other homomorphisms of program 

machines. Let's take a closer look at this concept. 

Let two program machines Tx and Ty be given, having the following 

components: 

        T  <  M ,  K ,  A ,  F ,  Ф ,  I  >          х х х х х х х 
 , 

        T  <  M ,  K ,  A ,  F ,  Ф ,  I  >          у у у у у у у 
 . 

We will call the mapping from Tx to Ty a homomorphismand designate: 

TxTy, if the corresponding algebraic systems of these software machines also 

have homomorphic maps: 

MxMy, KxKy, AxAy, FxFy, FxFu, IxIy. 

For displaysThe following generally accepted concepts are also used: 

domain :Dom() = A, 

range : Ran() = B, 

image: Im() = {(a)aA}, 

- injection:a1, a2A[(a1) =(a2) => a1 = a2 ], 

- surjection: Im() = Ran(), 

- bijection: simultaneously- injection and- surjection. 

That is, an injection presupposes some one-to-one mapping for some elements of 

the domain of definition, a surjection speaks of a complete domain of definition, 

and a bijection speaks of a one-to-one mapping. 

If we consider any two corresponding algebras X and Y of two software 

machines, then the following definitions can be made. Let algebras have operations 

of the same type {1, ...,n}. Then a homomorphism of algebras is the mapping: 

X0Y0, where X0 and Y0 are sets that support algebras, under which the 

following statement holds: 

  i:(i( x1, ..., xm ) ) =i((x1), ...,(xm)) , 

where { x1, ..., xm } = X0,(xi) = yi, yiY0. 

If 

 - injection, then it is called a monomorphism of algebras, 

 is a surjection, then it is called an epimorphism, 

 is a bijection, then it is called an algebra isomorphism. 

We will say that there is a monomorphism between two software machines if 

there is a monomorphism between all their corresponding algebras. Similarly, 

machines are in epimorphism if the same mapping exists for their corresponding 

algebras. The strongest mapping of programmable machines is isomorphism, 

which is also defined through isomorphisms of the constituent algebras. 

Note that the listed morphisms quite accurately make it possible to determine 

not only the relations between the sets-carriers of the algebras of software 



4 
 

machines, but also the relations between the properties of their operations. This 

follows from the fact that any algebra of program machines generates its carrier set 

using signature operations from a finite set of elements - the basis. 

The study of morphisms of software machines allows us to identify various 

classes and subclasses of the corresponding tools. If isomorphism indicates the 

equal power and equivalence of the functional capabilities of algorithmic 

languages, then epimorphism may indicate that one of the languages is a functional 

subset of another. Epimorphism usually occurs for two tools of different versions. 

The earlier version of the tool must have an injective mapping to the later one. If 

this property is violated, software compatibility is violated, which is a gross 

violation of the discipline of designing software systems. 

At the same time, in most cases, for different software machines, if they do 

not correspond to the same type of algorithmic languages (for example, universal 

languages), it is impossible to find a direct mapping of their designs into the 

designs of other tools. In this case, one can search for subsets of these means for 

which any of the homomorphisms turns out to be valid. Such a comparison of tools 

is necessary because it makes it possible to formally evaluate its advantages and 

disadvantages in comparison with others previously known. In addition, if a weak 

point is found in the toolkit, it can be eliminated if there is an understanding of the 

reason for its occurrence. 

Software machine homomorphisms can also be used to examine the 

conceptual integrity of a tool by comparing it with earlier versions or other 

established tools. 

The algebras that make up the programming machine use mainly the 

operations of composition of elements, for example, the composition of memory 

elements or the composition of operator constructions. Relations that complement 

algebra to an algebraic system allow us to consider the properties of these 

compositions. The need to study the properties of composition operations is 

determined by the following factors: 

- when analyzing compositions, it becomes possible to replace some 

operations or operators with others, making the program more efficient, 

- equivalent transformations based on the compositional properties of a 

software machine can lead to the concept of structural design with increased 

capabilities for debugging programs, 

- tool designers can use the composition properties of tool elements to 

transform it into more flexible versions (for example, adaptive software), 

- performing compositions on elementary software structures is the main way 

of designing software systems, and therefore contributes to the development of 

design methodology. 

Some changes that a designer can make to his toolkit, knowing the basic 

principles of studying software machines, lead to the emergence of new 

compositional properties of the toolkit, making it more attractive to the user. The 

strongest compositional properties are possessed by those software tools that, based 

on their properties, can be classified as well-studied universal types of algebras. 

These algebras have their own names and established methodology. Such universal 



5 
 

algebras include groups, rings, lattices, fields and various types of their varieties 

[120,121,122]. The correlation of elements of a program machine to certain known 

types of algebras will be called identification of a program machine. 

Before considering some classes of universal algebras that can be useful in 

identifying program machines, we present the basic properties of operations that 

occur in various universal algebras. 

Operationis called unary if it has one argument, i.e.:XX , or mapping the 

domain into itself. An operation is called binary if it has two arguments, 

i.e.:XXX, where- Cartesian product of sets, operations that implement the 

mapping XXXX are called ternary, etc. . For our purpose, it will be sufficient 

to consider the properties of some binary operations, since they are the most 

common case for elements of program machines. 

Let there be binary (two-argument) operations in some algebraAnd. Then 

the operationwill be called idempotent if for any element xX statement is true( 

x, x ) = x. In some network programming languages, operations of parallel 

composition of alternative program branches are idempotent. In this case, the 

composition of two identical branches will be functionally equivalent to one such 

branch. The same can be said about alternative composition in parallel programs 

[87,88,89,123]. 

Operationis called commutative if the statement is true for it(x1, x2) =( 

x2 , x1 ) , x1 , x2X. For example, the operation of alternative composition in 

parallel program machines, or the operation of sequential composition of two 

operators independent of each other, can be commutative. 

Operationwill be called associative if the statement is true for it(x1,( x2 , 

x3 ) ) =(( x1 , x2 ), x3 ) , x1, x2,x3X. Most compositional operations of 

software machine elements are associative. These are sequential and parallel 

compositions of operator constructions. 

Operations can have not only their own properties, but also properties in 

relation to other operations. An important property of one operation relative to 

another is the property of distributivity, which breaks down into two more 

particular cases. Operationwill be called distributive on the left with respect to the 

operation, if the following statement is true: 

 (x1,( x2 , x3 ) ) =(( x1 , x2 ) ,(x1, x3)). 

Operationis right distributive with respect to the operation, if the statement is 

true: 

 ((x2, x3), x1) =(( x2 , x1 ) ,(x3, x1)). 

It is easy to see that if the operationis commutative, and at least one of the 

properties of left or right distributivity is true for it, then the distributivity property 

on the other hand will also be true for it. The significance of the distributive 

property for the study of compositional operations of software machines is 

determined by the optimization factor introduced by the distributive 

transformation. This is indeed the case, since distributivity allows us to “bracket 

out” the general part of the expression, which is some formal recording of a 

program fragment. 



6 
 

In the properties of operations of universal algebras, it is also customary to 

highlight properties based on two constants that have certain remarkable properties. 

These constants are called zero (0) and one (1). In different algebras they may have 

different notations, but are identical in their properties. There must be an operation 

for zero, which makes the expression valid( x, 0 ) = 0 . For a unit, in the general 

case, the concept of an inverse element is used. In accordance with it, in the algebra 

for each element x there must be an inverse element x-1, such that the following 

statement is true:( x, x-1 ) = 1. A weaker property is the property( x, 1 ) = x. 

This property does not identify an exact unit, but is generally useful for studying 

the transformation of algebraic statements, which in the case of programmable 

machines are formal expressions corresponding to programs. The constants zero 

and one are usually distinguished as 0-place operations to determine the type of 

algebra. 

Type of algebracall a set consisting of designations for all operations of this 

algebra, including 0-place ones, indicating their locality. For example, for formal 

arithmetic with the operations of addition and multiplication, the following type 

can be defined: 

{ 0 (0), 1 (0), + (2), * (2) }. 

Universal algebras having equal types are called of the same type. The 

corresponding concept can be defined for software machines. Program machines, 

all the corresponding elements of which are of the same type, are also called 

homogeneous program machines. 

The definitions made allow us to further present the most well-known classes 

of universal algebras and consider some of their positive properties from the point 

of view of program formalisms. 

Groups 

An algebra containing a single binary operation is called a groupoid, and this 

binary operation is called a multiplication or composition operation. Groupoids do 

not necessarily require the existence of any operation properties. 

In elements of software machines, groupoids can most often be found in 

algebraic systems of memory elements and interpretation of syntactic 

constructions, for which a single composition operation is sufficient. Other 

machine elements are usually more complex and use more than one composition 

operation. 

If the groupoid operation is associative, then such a groupoid is called a 

semigroup. So, for example, the operation of composition of memory elements 

cannot be considered associative, since the order of elements following each other 

is very significant. The operation of composition of elements of interpretation of 

language constructions is isomorphic to the theoretic-set union, which allows us to 

consider the universal algebra based on it as a semigroup. 

If the signature of a groupoid contains two elements, one of which is a binary 

operation, and the second is an identity, then such an algebra is called a groupoid 

with identity. In programming, there are constructs that can be classified as units, 

for example, the famous empty operator. If we consider its sequential composition 

with any other operator, while considering the composition to be an operation of 



7 
 

the corresponding groupoid, then the algorithmic algebra based on this operation 

can be called a groupoid with identity. However, the difficulty lies in the fact that 

the exact concept of a unit is associated with the existence of an inverse element, 

which may be true only for some subsets of the tool's software machine. This 

follows from the fact that almost always in the entire toolkit or algorithmic 

language one can find a construction for which, based on the result of its execution, 

it is impossible to determine the initial data, which means it is impossible to find 

such an opposite operator, a sequential composition with which would give a single 

operator. 

As an example, we can consider the operator of multiplying the contents of 

two memory elements and writing the result to some third place. Let's denote this 

operator by f+ ( x1, x2, x3 ) . For a unit to exist in the corresponding algorithmic 

algebra, the following condition must be met: 

f+ ( x1, x2, x3 )°fx = 1, 

Where°- operation of sequential composition of operators. For brevity, the fx 

operator is written without arguments, since in this case there is no 

its location is important, because it is required to find the corresponding operator of 

any terrain, but with the property f+ ( x1, x2, x3 ) = fx-1 . It is quite obvious that it 

is impossible to uniquely find such an operator. We can think of the notation f-1 as 

applying the unary operator -1 to the argument f. 

At the same time, there is a subset of operators for which obtaining the inverse 

operator is not difficult, for example, operators for increasing an argument by a 

constant value or moving to the next element of a given type. Isolating this subset 

of operators into a separate subalgebra will allow us to consider it as a groupoid 

with unity, which provides a significant advantage in optimization and computer-

aided design of programs. 

A semigroup with identity is called a monoid. It is distinguished from a 

groupoid with unit by the presence of the associativity property of the binary 

operation of the signature. 

More special cases of semigroups and groupoids are algebras, which have 

stronger properties of operations. So, for example, a semigroup or groupoid is 

called idempotent if its binary operation is idempotent and, accordingly, 

commutative if it has the commutative property. Each of the additional properties 

provides new opportunities for converting programs, since it puts at the disposal of 

the researcher a greater variety of possibilities for converting them. 

An algebra is called a group if it has type {1(0),-1(1),* (2) } and the following 

relations hold for its operations: 

1) 1 * x = x * 1 for any x from the carrier set, 

2) x * x-1 = x-1 * x = 1, for any x from the carrier set, 

3) ( x * y ) * z = x * ( y * z ) = x * y * z, for any x, y, z belonging to the set of 

the carrier. 

It should be noted that operation designation signs do not play a special role. 

It is only important to accurately determine their properties. 

If a binary operation of a group has the property of commutativity, then such a 

group is called commutative or Abelian. 



8 
 

For Abelian groups there are many derived properties, proven in various 

theorems, and allowing complex transformations of the expressions written for 

them up to the solution of equations. Solving the equations of algorithmic algebras 

would make it possible to automate many processes of searching for logical errors, 

optimization and computer-aided design of programs. 

Lattices 

When considering this class of algebras, it is necessary to consider algebraic 

systems that include, in addition to carrier sets and signatures, a set of relations on 

the elements of the carrier set. There are also certain properties for relations that 

contribute to the analysis of compositional operations research. When considering 

the elements of program machines, this is very important, since many program 

composition operations have certain properties only if their elements exist in 

certain relationships. 

For relationships, as for operations, there is its own classification, the basis of 

which is as follows. 

A binary relation r is called reflexive if for any element x belonging to the 

carrier set of the algebraic system xrx is true. 

A relation is called symmetric if for any two elements of the support set x and 

y the statement xry = yrx is true. Accordingly, a relation is called antisymmetric if 

the symmetry statement does not hold for it. 

If a relation has the property xry & yrz => xrz, where & is logical addition, 

and x, y, z belong to the carrier set of the algebraic system, then the relation is 

called transitive. A reflexive and transitive relation is called a preorder relation, and 

an order relation if it is also antisymmetric. 

An attitude is called tolerance or tolerant if it is reflexive and symmetrical. 

Equivalence is considered to be a reflexive, symmetrical and transitive relation at 

the same time. 

Commutative idempotent groups are called intersection semilattices if they 

satisfy the following relation: 

[ ( x * y ) r ( x ) ] & [ ( x * y ) r ( y ) ], 

where * is the binary semilattice operation and r is the order relation. If a 

symmetric condition is satisfied in which the relation r forms the inverse order, 

then such algebras are called union semilattices. 

An algebra of type { * (2), + (2) } is called a lattice if the following conditions 

are satisfied: 

1) x + x = x for any x belonging to the carrier set, 

2) x * y = y * x, x + y = y + x, for any x, y belonging to the carrier set, 

3) ( x * y ) * z = x * ( y * z ) = x * y * z, ( x + y ) + z = x + ( y + z ) = x + y + 

z for any x, y , z belonging to the carrier set, 

4) x * ( y + z ) = x , x + ( x * y ) = x, for any x, y belonging to the carrier set. 

Under these conditions, expression 4 is called the absorption property. 

Lattices are a fairly common type of algebra used in computer programs. In 

particular, they can be used to describe the properties of operating with set-

theoretic data that has order. In some cases, by defining an order that was not 

explicitly seen in algorithmic algebra, equivalent program transformation 



9 
 

algorithms can be significantly simplified. Lattices can be used to describe 

hierarchical and relational structures, for example, when analyzing software 

systems that work with databases. 

A well-known type of algebra that is a special case of lattices is Boolean 

algebras, which are used in the design of logical expressions in program 

conditionals. These algebras have type { 0 (0), 1(0), -1 (1), * (2), + (2) } and in 

addition to the conditions that hold for lattices, the following statements must also 

be true for them: 

a) x * x-1 = 0, x + x-1 = 1 for all x from the carrier set, 

b) x * ( y + z ) = ( x * y ) + ( x * z ), for any x, y, z belonging to the carrier set. 

The operation -1 in Boolean algebra is usually called negation. 

Rings 

Lattices are complex algebras with several operations. At the same time, real 

software tools can rarely be classified as lattices due to the large number of 

properties imposed on the operations of this algebra. Tools can be formally 

represented by software machines in which algorithmic algebras have complex 

signatures with various operations having more or less weak properties. In this 

case, we can consider these operations both separately from each other and their 

relative properties. 

One of the well-known classes of abstract algebras, which can often be used 

even when studying the compositions of operator constructions in algorithmic 

languages, is the class of rings. 

Let F be some non-empty support set on which two binary operations + and * 

are given, satisfying the following requirements: 

1) < F, + > is an Abelian group, 

2) <F, *> - semigroup, 

3) for any elements x, y, z of the carrier set there is a distributive property: 

( x + y ) * z = x * z + y * z , x * ( y + z ) = x * y + x * z , 

then the algebra <F, +, *> is called a ring, and its components <F,+> and <F, *> 

are called the additive group and the multiplicative group of the ring, respectively. 

A ring can be commutative if the multiplication operation is commutative. 

For formal program machines, we can consider more general algebras based 

on the definition of rings; these include semirings, i.e. rings that do not have a unit, 

oriented rings, i.e. rings with the only distributive property (left or right), and 

oriented semirings, which are the result of a combination of these conditions. An 

example of a program machine whose compositions of syntactic structures 

correspond to the algebra of an oriented left semiring are programs in extended 

transition networks implemented in the ATN algorithmic language. 

Fields 

Fieldis a commutative ring with unity (not equivalent to zero) in which every 

element has an inverse. The multiplicative group of this algebra is called the 

multiplicative group of the field. 

One of the special cases of fields are fractions with actions on them. Fields 

can very rarely serve to formalize the control syntactic constructions of software 

machines, but, at the same time, they can be used in formalisms for the syntactic 



10 
 

constructions of applied operation systems. For example, fields can be used to 

examine expressions in algorithmic languages that describe various computational 

constructs. 

The considered classes of algebras can be used in various combinations in 

specific program machines. For some composition operations, local subsets of 

carrier sets can be identified that meet the conditions of a particular algebra. 

When analyzing program machines of algorithmic languages, you can also use 

the formal means of polybasic algebras. To do this, the carrier set is divided into 

subsets of different varieties. In this case, any of the signature operations has its 

own type, which is a list of types to which the arguments of the operation and its 

result can belong. In this case, each specific argument is assigned its own type of 

carrier set. Polybasic algebras quite fully describe the syntactic constructions of 

universal algorithmic languages, since these languages have operators whose 

arguments can be expressions and other operators of strictly limited types. So, for 

example, in most languages, the logical expression of a conditional operator cannot 

contain a cyclic construction, and variable description operators cannot contain 

switch operators, etc. 

At the same time, polybasic algebras are quite complex, but can be reduced to 

a combination of single-basic algebras, so the question of choosing algebraic 

formalisms for the study of software machines must be decided by the researcher 

himself, guided by the criteria of adequacy and simplicity. 

Algebras with sorts of supported sets provide an opportunity to evaluate the 

conceptual integrity of a tool. Conceptual integrity can be understood as fulfilling 

the requirement of a minimum number of varieties of carrier sets of a software 

machine while ensuring the completeness of the functional tools of the toolkit for 

solving the problems for which it is aimed. Thus, the fewer classes of operator 

constructs of a programming language that must be taken into account in 

compositions when composing a program, the more holistic the language is. 

All tools are objectively subject to continuous development in order to obtain 

new, more powerful versions. At the same time, when making any changes to 

them, it is necessary to find out the following properties of the new structures 

included in the toolkit: 

- whether the new design violates the basic syntax of the instrumental system, 

- whether new classes of operators appear through additional division of old 

ones, 

- can the newly introduced operator be attributed to any of the already 

identified classes of operators, 

- is there a possibility of violating the structure of programs (given the 

existence of principles of structure for this language tool), 

- whether the new design of the system requires a fundamentally new 

interpretation. 

If at least one of the listed properties of the toolkit is violated, we can talk 

about a violation of the conceptual integrity of this toolkit by the new design. In 

this case, by syntax violation we mean the need to use fundamentally new means of 

syntactic analysis of the language in the corresponding analyzing programs, for 



11 
 

example, compilers. The emergence of new classes of operators means the need for 

additional division of the constructions available in the toolkit into new classes. For 

example, you can introduce a new operator into a programming language whose 

arguments can only be conditional constructs and assignment operators. At the 

same time, such a separation did not previously exist for other operators, therefore, 

the new construction will negatively affect the conceptual integrity of the language. 

In a similar way, a new operator can violate integrity by the fact that it itself 

belongs to a single new class, i.e. it can only be used in strictly limited arguments 

to other operators, which was not the case with pre-existing operators. For many 

tools, the concept of structure makes it possible to build the architecture of the 

designed program so that it is simply debuggable, changeable and efficient. If a 

new construction introduced into a toolkit by its developer can, in combination 

with other operators, turn a program into a non-structural one, then introducing 

such a construction is inappropriate. The interpretation of the new design also plays 

a big role. That is, it may turn out that the meaning of its functioning does not fit 

into the system of concepts that the user of the toolkit subconsciously creates in 

himself when mentally modeling the work of the program. As an example, we can 

cite the PROG construction introduced into the Lisp language, which has a non-

standard functional interpretation. Its negative impact on the conceptual integrity of 

the language has been noted even by its developers. 

At the same time, objective circumstances may develop in such a way that the 

introduction of a new design that violates conceptual integrity becomes necessary 

because it meets certain user requirements. This may be justified if such a 

construction is not unique, and the system of newly introduced operators has its 

own conceptual integrity. However, even in this case, the tool developer should 

develop a completely new tool rather than develop an old version. 
 


