
UNIFICATION ALGORITHMS BASED ON PROGRAM TERMS 

If the terms s and t represent a formal record of programs within the 

framework of some predetermined program machine, then we are talking not 

simply about unifying or comparing two programs in order to find common 

fragments in them, but about an attempt to find some third term p containing 

sufficient number of variables to find such substitutionsAnd, for which the 

following relations hold: 

     (p) = s,(p) = t.     

The difficulty is that for most algorithmic languages there is a trivial solution 

to this problem, for example, as follows. Let's create the following program 

fragment: 

if ( x ) s else t; 

In this case= { x <- 1 }, and= { x <- 0 }, and then, by our definition, a program p 

is obtained that satisfies the requirement of comparison with the programs 

represented by the terms s and t. Such a trivial solution has the right to exist in the 

absence of any common fragments in the terms s and t, but in other cases it is a 

method of extensive development of software systems in order to acquire new 

functionality for the program. It should, however, be noted that this way of 

developing program components is currently common in groups of program 

developers using low-automated design with “menu” methods. 

A more constructive requirement should be considered the requirement to 

simplify the resulting partial structural unification of the program p relative to the 

partially unified programs s and t. In the simplest way, the complexity G of a 

program p can be represented by a natural number n, corresponding to the total 

number of program statements: G(p) = n. Mathematically, strictly for any term s 

the complexity of G(s) is equal to the number of function symbols of which it 

consists. Thus, the requirement to reduce program complexity can be described by 

the following inequality. 

     G(p) < G(s) + G(t) .    

The fulfillment of this predicate will guarantee the feasibility of using the result of 

the partial unification for programs s and t. For the trivial solution given earlier, 

this relation does not hold, because G(p) = G(s) + G(t) + G (fif) = G(s) + G(t) + 1. 

The feasibility of partial unification in the case of execution G(p) < G(s) + 

G(t) is determined by the fact that when finding unified fragments of program 

terms, you can use modular, instrumental or frame approaches to obtain the 

resulting program that has the functionality of partially unified programs , which 

has a volume smaller than a trivially combined program. 

Before presenting possible partial unification algorithms obtained from known 

unification algorithms, we note those differences that do not allow direct use of 

existing algorithms: 

1) with partial unification of two program terms, it is necessary to find the 

most general term that is completely unified with both program terms, as well as 

two unifiers corresponding to each of the terms, while with complete unification it 

is necessary to find a single unifier for the two initial terms; 



2) partial unification should provide a condition for reducing the total 

complexity of the final term; 

3) the need to find, when completely non-unified fragments of a program are 

discovered, terms of maximum complexity to replace them with a variable; 

4) not only individual variables, constants, terms, but also simply functional 

symbols can be replaced by variables, as is customary in attribute structures; 

5) the found substitutions significantly influence the structure of the final term 

of the program. 

It should be noted that the ideal option for comparing program terms is 

complete unification in its classical sense, which allows you to effectively form the 

resulting program term based on the found unifier. 

For a more rigorous justification of the need to modify existing unification 

algorithms, we will consider various cases of comparison of program terms that 

make sense when optimizing programs, as well as during their automated 

development. 

Classic unifier highlightingis implemented with complete unification of 

fragments of program terms, i.e. for terms s and t a common unifier must be 

found, such that(s) =(t). In this case, changes of variables are used to form the 

final program term p, such that(p) =(s) =(t) . 

To execute properties(p) = s and(p) = t substitutiontransforms into two 

substitutions:(p) = s and(p) = t. This transformation is obtained as follows. 

When the unification algorithm detects a program variable that needs to be 

replaced by another variable or, in general, a term, a corresponding program 

element p is formed, consisting of one disconnected (new) variable. Next, in the 

corresponding replacement lists (for program s or t, depending on where the 

program variable was located and where the term was located), a reverse 

substitution is made in place of a disconnected variable for one program - a term, 

for another - a program variable. 

If replacement listsAnd(to restore programs s and t, respectively) combine 

and remove substitutions from them in place of disconnected variables - program 

variables, then you get a complete unifierfor the terms of the two original 

programs. 

Let's look at a small example of unifying program fragments for the Lisp 

language. 

Program 1 

( append ( eval ( x ) ( quote description ))) 

Its formal representation in the form of a term is as follows: 

s = fa(fe(x), fq(b)) 

Program 2 

( append ( eval (list(quote define) 

(list (quote quote) 

(list (list name (list (quote lambda) 

(parametrlist description)))))) L )) 

For clarity, let’s write down the corresponding term line by line: 



t = fa(fe(fl(fq(a), 

fl (fq(c) , 

fl(fl(d), fl(fq(l) 

p, b ))))), y ) 

The following notations are used here: fa , fe , fl , fq - respectively, functional 

symbols for Lisp functions: append, eval, list, quote; x and y are variables 

corresponding to program variables x and L; constants a, b, c, d, l - denote program 

constants define, description, quote, name, lambda. 

The complete unification algorithm for this example will find the following 

unifier: 

= { x <- fl (fq (a), fl ( fq(c) , fl ( fl (d), fl( fq(l) p, b )))), y <- fq ( b ) }. 

In this case, the condition is satisfied(s) =(t), and the resulting program p, for 

which the condition would be satisfied(p) = s,(p) = t , there will be a program 

corresponding to the term p = fa(fe(x),y). For this program the unifierwill be 

transformed into two substitutions: 

 = { x <- fl (fq (a), fl ( fq(c) , y <- yL }, 

 = { x <- xx , y <- fq ( b ) }, 

where xx and yL correspond to the program variables x and L. These substitutions 

will ensure that the condition is satisfied(p) = t,(p) = s, which is a necessary 

condition for unification. 

A positive property of obtaining substitutionsAndis that they are unifiers 

for matching program p with programs s and t. 

Selecting a unified framecharacterized by the fact that complete unification 

of two program fragments cannot be achieved due to the non-unification of any 

internal (nested at a deeper level of brackets) arguments. This, as a rule, occurs in 

the case when the initial function symbols of the allocated local blocks coincide, 

and, therefore, the number of their arguments coincides, but the arguments 

themselves do not have a common unifier. 

Nevertheless, under these conditions it is possible to find a program term p for 

which the equality(p) = s,(p) = t. To do this, you can do the following. In the 

process of comparing terms, their non-unified fragments fx, fy, fz, etc. replace with 

new term variables, for example, Xa, Xb, Xc, etc. . At the same time, enter the 

corresponding substitutions Xa <- fx, Xb <- fy, Xc <- fz, etc. into the lists of 

substitutions separately for term s and term t. 

With a specific implementation of such an algorithm, the variables Xa, Xb, Xc 

may look like program stubs. In the simplest case - automatically replaced 

comments, in more interesting cases - variables of the “function pointer” type, a list 

for Lisp programs or preprocessor directives. 

Let's give a simple example of identifying a unified framework for two 

fragments of programs in C++. 

 

 

 

 



Program 1 

      Formal presentation 

while ( n-- ) {    fw( f-- ( xn ), f{} (  

if ( Columns != n ){   fif e( f!=( xc, xn ), f{} (  

printf (“Error!”) fpr( e ), 

exit(12);   fe(a)), 

else {      f{}( 

Columns--;   f--(xc), 

  printf(“\n =“);   fpr(b))),  

}   

Ar[n] = n+1;    f=( f[ ] (xa, f++(xn) ) ) ) ) 

}  

 

Program 2 

 

while ( Line-- ) {    fw( f-- ( xl ), f{} (  

if ( Minutes != Line )   fif e( f!=( xm, xl ), 

Minutes = Line;   f=(xm, xl), 

else {     f{}( 

printf(“\n . “);   fpr(k),  

wait(1);    fwa(r) ) ) ) 

}       

}  

In this example, the function symbols fw , f-- , f{} , fif e , f!=, fpr, fe , f=, f[ ] , 

f++ , fwa correspond to the C++ programming language operations: while do, --, 

{}, if else, !=, printf, exit, =, [ ] . For the program variables n, Columns, Ar, Line, 

the term variables xn, xc, xa, xl are selected, respectively. The symbols a, b, e, k, r 

denote constants: 12, \n =, Error!, \n . , 1 . 

It is quite obvious that the terms of the given program fragments cannot be 

completely unified. At the same time, there is a common framework for them, 

which can be expressed by the following term p: 

p = fw (f-- ( x0 ), f{} (fif e( f!=( xt, x0 ), Xa) , f{} ( Xb ) ) Xc ), 

in which program variables are replaced by new variables x0, xt, and non-unified 

program fragments are replaced by term variables Xa, Xb, Xc. 

It is easy to show that there are unifiersAnd, making it possible to compare 

the resulting program p with the original programs s and t: 

 (p) = s,= { x0 <- xn, xt <- xc, Xa <- f{}( fpr( e ), fe ( a ) ), ), 

Xb <- f{}( f--( xc), fpr( b ) ), Xc <- f=( f[ ] (xa, f++(xn) ) ) }, 

  (p) = t,= { x0 <- xl, xt <- xm, Xa <- f=( xm, xl ), 

    Xb<- f{} ( fpr( k ) , fwa( r ) ), Xc <- f; } , 

where f; - an empty “skip” operator. 

The use of an empty unit operator makes it possible to easily complete the 

structure of a simpler compared program to the required one so that with partial 

unification it is possible to identify a common framework. At the same time, the 

limiting criterion for the use of this method is the expression G(p) < G(s) + G(t). 



Identification of terms of software toolsis one of the functions of partial 

unification of terms of program structures in the case where two program 

fragments are non-unified in the classical sense, but contain completely unified 

local fragments. 

In such a situation, it is possible not to adhere to the conditions of the 

relationship(p) = s,(p) = t, since the only way to combine such program 

fragments is the trivial method described earlier. However, in this case, the term 

matching algorithm will bring a positive effect in identifying the so-called general 

software tools, i.e. almost completely identical local program fragments, with the 

exception of differences in the designation of variables. In practice, this selection 

of fragments is called a modular approach and is implemented through subroutines 

or functions written into a common tool library. 

Let us give a brief example of such unification for programs in the Pascal 

language. Let there be two program fragments that calculate in different places the 

same function for converting positive decimal numbers to the binary number 

system. 

Program 1   Formal presentation 

if x > 25 then   fif(f> (x, 25), 

begin     fb( 

i := 1;      f=(i, 1), 

while x<> 0 do    fw(f<>( x, 0 ),  

begin     fb( 

res[i] := x mod 2;   f=(f [ ](res, i), fm(x,2)), 

x := x div 2;    f=(x, fd( x,2 ) ), 

i := i + 1;     f++(i); )) 

end     )) 

end 

 

Program 2 

while m > 0 do   fw(f>(m, 0), 

begin     fb(  

m := m - 1;    f--(m), 

i := 1;      f=(i, 1), 

while x<> 0 do    fw(f<>( x, 0 ),  

begin     fb( 

res[i] := x mod 2;   f=(f [ ](res, i), fm(x,2)), 

x := x div 2;    f=(x, fd( x,2 ) ), 

i := i + 1;    f++(i); )) 

end     ))  

end 

 

This example uses the following functional notation for Pascal language 

operators: fw ,f>, fb,f--,f=,f<>,f [ ] , fm, fd - respectively: while, >, begin end, 

decrement, = , <>, [ ], mod, div. For variables and constants in the example, their 

program designations are preserved. 



For this example, the resulting program p could be represented as follows: 

X ( fb( f--(m), f=( i, 1), fw (f<>( x, 0 ), fb( f=(f [ ](res, i), fm(x,2)), 

  f=(x, fd( x,2 ) ) , f++(i); )))). 

In this case, it is not possible to maintain the ratio(p) = s,(p) = t by using any 

substitutionsAndterms in place of the term variable X. At the same time, we can 

select a unified common part of the term after X, replacing it with some variable Y. 

Then the structures of both programs can be expressed quite simply: 

    s = fif (f> (x, 25), Y), t = fw(f>(m, 0), Y), 

preserving instrumental substitution for them: 

= { Y <- ( fb( f--(m), f=( i, 1), fw (f<>( x, 0 ), fb( f=(f [ ](res, i), fm(x,2)), 

  f=(x, fd( x,2 ) ) , f++(i); ))) }. 

If it is necessary to combine programs into a single module (unification 

composition), it will be possible to use the axioms of equivalent transformation or 

the method of the trivial menu-merger set out at the beginning of this section. 

Thus, we have shown that classical unification algorithms do not make it 

possible to process all cases of similarity between terms of the formal structure of a 

program. In order to obtain an acceptable algorithm for partial matching of terms, it 

is necessary to modify the known algorithms in order to implement all the 

considered cases: 

- classic selection of the unifier, 

- highlighting the unified frame, 

- highlighting terms of software tools. 

We will begin our consideration of this kind of algorithms with the simplest 

modified unification algorithm, which is based on Robinson’s algorithm. Robinson 

was one of the first to study unification algorithms for algebraic terms based on the 

so-called string representation of terms. 

The first algorithms based on the basic heuristics of enumerating options 

showed that the complexity of the unification algorithm in time exponentially 

depends on the length of the unified terms (the number of variables in the terms). 

The development of unification methods led to works based on lattice theory and 

the structure separation method. These methods gave better measures of the 

algorithm's time complexity, rated as almost exponential. In later works, based on 

the Robinson algorithm, methods for special marking of terms were obtained, 

which made it possible to reduce the complexity of unification to quadratic. The 

best characteristics of complexity, approaching linear O(n + m log m), where m is 

the number of different variables in a term, have been obtained in recent years 

based on methods of graphical representation of terms and largely due to specific 

software implementations that use list representation of data with separate 

formation of equivalence classes of subterms. 

Consideration of the modified Robinson algorithm is very significant, since 

specific implementations of unification algorithms with good complexity 

characteristics are largely determined by the speed of operations of modern 

programming languages working with string (list) representation of data. Such 

languages include Refal, Lisp, and the input language of the K-system. 



Let us describe the modified Robinson algorithm in some abstract algorithmic 

language, the syntax of which is intuitive due to its similarity with Algol-like 

languages such as Pascal or C. The input of the algorithm is two comparable terms 

s and t, the output is a logical variable unifiable, taking the value “true” if the terms 

programs were partially unified, and “false” - otherwise. In addition, the output of 

the algorithm is the term p, which is the resulting generalized program, as well as 

substitution listsAnd, satisfying the requirement G(p) < G(s) + G(t) and a list of 

substitutionsfor the formation of software tools. 

unify (s, t) => (unifiable: boolean, 

p: program term,,,b: substitutions) 

begin 

 if ( s or t is a variable ) then 

begin 

Let x be a variable and t another term, then 

if x = t then (unifiable, p,,,) <- ( “true”, x,0,0,0) return 

else if ( x is in t ) then unifiable <- “false” return 

else (unifiable, p,,,) <- (“true”, x, 0, x <- t, 0 ) return 

 end 

 else 

begin 

Let s = f (x1, ..., xn), t = g (y1, ..., ym) 

if fg then 

begin 

p <- Xfg; 

 <- {Xfg <- f ( x1, ..., xn )},<- {Xfg <- g (y1, ..., ym )} 

{ Select terms 

software tools } 

  for i <- 1 to n do  

for j <- 1 to m do  

result <- unify(xi, yj); 

compose ( result, (unifiable, p,,,) ) 

end for 

end for 

end 

else { (f = g) => ( m = n ) } 

{ Search for a complete unifier or unified framework } 

begin 

p <- f 

unifiable <- “true” 

 ,,<- nil 

for i = 1 to n 

result <- unify( xi , yi ) 

compose ( result, (unifiable, p,,,) ) 

end for 



end 

end 

return (unifiable, p,,,) 

end 

The given algorithm provides partial unification of program terms, although it 

does not claim to be efficient in terms of time complexity. In algorithms, the words 

“Let” indicate an assumption about the possible structure of the compared elements 

of terms. The <- signs indicate writing the result of an action to the right of the sign 

into the structure to the left. The algorithm is recursive and therefore, at a new level 

of localization of program terms, it uses the unify function again. The compose 

operation is designed to perform compositions of data structure values (unifiable, 

p,,,) obtained at previous levels of comparison with the results of the current 

level. 

The modified Robinson algorithm allows you to significantly optimize 

programs in source texts in various algorithmic languages, both at the stage of their 

complete completion and during design. However, its significant drawback is 

insufficiently complete optimization when identifying terms of software tools. For 

more complete optimization, it is necessary to consider the unification of all terms 

of the program structure at different localization levels (each with each). In 

Robinson's algorithm, this will lead to an unjustified deterioration in the 

complexity of matching terms over time. Next, we will present algorithms in which 

the optimization problem when identifying terms of software tools is solved more 

effectively. 

Tree representation of terms became another serious theoretical basis for the 

creation of modern unification algorithms. The most well-known algorithm using 

such a representation is the Hewitt unification algorithm, which will be given 

below in a modified form to meet the requirements for partial unification of 

program terms. 

Representing a program term in the form of a tree assumes that any program 

construct is designated as the top of a tree, and the simpler syntactic constructs 

included in it are its descendant nodes. In this case, any linear sequence of 

operators is always combined into a block construction with the name f{}, as was 

done in the previous examples of this section. Since under these conditions there 

are no operators left that are not included in any other operators, the possibility of 

constructing a program term tree becomes obvious. The only exception is the top 

level of the program, which can consist of several unblocked statements, but this 

problem is simply solved either by introducing a fictitious Start node, or by 

introducing a general block structure of the program (which, as a rule, is already 

included in the syntax of most algorithmic languages). 

To demonstrate the advantages of a tree representation of program terms, 

consider a short example 

ProgramFormal presentation   

begin     fb( 

i := i+ 1;     f++(i), 

while x<> 0 do    fw(f<>( x, 0 ),  



begin     fb( 

res[i] := x mod 2;   f=(f [ ](res, i), fm(x,2)), 

x := x div 2;    f=(x, fd( x,2 ) ), 

i := i + 1;     f++(i); )) 

end     ) 

end 

A graphical representation of the term corresponding to this program fragment 

is shown in Fig. 1. With this representation, it becomes possible to use well-known 

graph transformation algorithms, as well as to involve, in a specific software 

implementation of the algorithm, the unification of programming languages that 

allow the processing of lists or trees (for example, the corresponding C++ class 

libraries). 

Using a program term tree allows you to search in advance for equivalence 

classes of terms and subterms, as well as use simultaneous processing of equal 

terms, for which the program graph is converted to a form as shown in Fig. 2. 

In this case, identical terms are represented by the same vertices. To indicate 

the repeated occurrence of a subterm, variable or constant in a term, an additional 

arc is used. 

Let us present a modified Hewitt algorithm for partial unification of program 

terms. 

unify (s, t) => (unifiable: boolean , 

p: program term,,,b: substitutions) 

begin 
<List of pairs for unification> <- { s, t } 

for (for each node z in s and t) 

z.class <- z 

while ( <List of pairs to unify> ) do 

       fb 
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Fig. 1 Tree representation of the program term 
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Fig. 2 Modified term representation of the program 

 

begin 

(x, y) <- pop ( <List of pairs to unify> ) 

u <- FIND(x) 

 v <- FIND(y) 

 if(uv)then 

begin 

  if(uand v are not variables and u.symbolv.symbol ) then 

begin 

p <- Xuv 

 <- {Xuv <- f ( x1, ..., xn )},<- {Xuv <- g (y1, ..., ym)} 

 end 

  end 

w <- UNION (u, v) 

if ( w = v and u is a variable ) then 

u.class <- v 

if ( u and v are not variables ) then 

begin 

Let (u1, ..., un) = u.subnodes 

  Let (v1, ..., vm) = v.subnodes 

for i <- 1 to n do 

for j <- 1 to n do 

push((ui, vj), <List of pairs to unify>); 
end for 
end for 

end 

end 

end 

FORM (unifiable, p,,, b) 



 if VERIFY ( p, s, t ) return (unifiable, p,,, b) 

end 

This algorithm assumes that each of the nodes of the program term graph is 

described using the following structure: 

structure node 

symbol: symbol of a function, variable, or constant from a term programs, 

subnodes: list of nodes that are children of this  node 

class: node representing the equivalence class for of this node 

end. 

The essence of the algorithm is to split the vertices of the tree into equivalence 

classes, then compare these classes with each other and combine them into a single 

tree after partial unification. This method of unification allows for very complete 

processing of the original terms even at different levels of localization. The FIND 

function finds the current nodes in a term for comparison, the UNION function is 

designed to combine separated sets of terms, taking into account unifiable data, 

p,,, b. The FORM function generates a new graph made up of the root nodes of 

the equivalence classes. This graph is the result of partial unification. The final 

VERIFY procedure checks the criterion G(p) < G(s) + G(t) about the effectiveness 

of the comparison system produced. 

The Robinson and Hewitt algorithms, modified to partially unify program 

terms, have a number of disadvantages: 

- Robinson’s algorithm does not allow partial unification of terms of different 

localization levels, 

- both algorithms do not provide for the use of properties of operations, and 

therefore can classify completely comparable program terms that require 

preliminary equivalent transformation as non-unifying, 

- these algorithms do not use preliminary evaluation functions, such as 

similarity or difference functions, which reduces their efficiency, 

- Hewitt's algorithm uses a large number of preliminary steps to construct 

term trees and vertex equivalence classes, which also affects efficiency. 

From the above, we can conclude that it is advisable to construct a new 

algorithm that would take into account the listed disadvantages. 

Let us propose an algorithm for partial unification of program terms, built on 

the basis of a matrix representation of trees of program terms. 

Let F be some program term containing function symbols f1, f2, ..., fn, 

variable symbols x1, x2, ..., xm and constant symbols c1, c2, ..., ck. Then the tree 

that corresponds to the term F can be denoted by GF: 

GF = <, { f1, f2, ..., fn , x1, x2, ..., xm , c1, c2, ..., ck }>, 

Where- subordination relation for the tree vertices. 

Let us create an adjacency matrix M for the tree of the program term GF, 

which will reflect the connections between specific symbols of the syntactic 

structure of the program. This matrix looks like this: 

f1, f2, ..., fn, x1, x2, ..., xm, c1, c2, ..., ck 

 



f1, a11 a12 ... a1n ... ... ... a1m ... ... ... a1k 

f2, a21 a22 ... a2n ... ... ... a2m ... ... ... a2k 

..., ........................................................ ............. 

fn , an1 an2 ... ann ... ... ... anm ... ... ... ank 

x1, ..................................... .......... 

x2, ..................................... .......... 

..., ........................................................ ............. 

xm, am1 am2 ... amn ... ... ... amm ... ... ... amk 

c1, ..................................... .......... 

c2, ..................................... .......... 

..., ........................................................ ............. 

ck ak1 ak2 ... akn ... ... ... akm ... ... ... akk 
 

The matrix element aij is set equal to 1 if the vertices at the intersection of the 

column and row of which this element is located are connected by an edge of the 

GF tree, and equal to zero otherwise. In the matrix M, the row and column names 

can be arranged in the same way as they follow each other in a program term. At 

the same time, with a large program volume, the adjacency matrix can have a very 

large dimension, which will complicate its use in real unification programs. It is 

necessary to find a form of matrix representation in which it occupies an acceptable 

amount of computer memory. In connection with this, we prove the following 

theorem. 

Theorem 

For any adjacency matrix M corresponding to the tree GF of a program term, 

there is such an arrangement of column and row names f1, f2, ..., fn, x1, x2, ..., xm, 

c1, c2, ..., ck, with in which each of the rows of the matrix an1 an2 ... ann ... ... ... 

anm ... ... ... ank contains a single chain ai1 ai2 ... ait , all of whose elements are 

identity. All other elements of the line are zero. 

Proof 

Consider a tree GF corresponding to some term F. All descendants of any 

vertex of this tree are one level of tree depth below this vertex. Let's arrange the 

names f1, f2, ..., fn , x1, x2, ..., xm , c1, c2, ..., ck so that first comes the name of 

the root vertex, then all its descendant vertices, then all its descendants descendants 

of the root node, etc. . Let us now assume that in the matrix M there is a certain 

row in which there are three consecutive elements ai1 ai2 ai3 equal to 1, 0, 1, 

respectively. This will mean that in the tree corresponding to the term, a vertex has 

been found or is simultaneously connected to at least two vertices different levels, 

or with at least two vertices corresponding to the internal elements of different 

terms. According to our constructions, such a situation cannot happen; therefore, in 

no row of the matrix M there are subrows ai1 ai2 ai3 equal to 1, 0, 1, respectively. 

This, in essence, means the validity of the theorem.  

Consequence 

In the adjacency matrix M there are rows whose element values are only 

zeros. 



Indeed, any program term contains the simplest constructions: variables and 

constants that have no arguments, and therefore are represented as terminal vertices 

in the tree corresponding to the term. Terminal vertices do not have edges leading 

to descendant vertices; therefore, by constructing the matrix, the row of the matrix 

corresponding to the terminal vertex will be completely zero. 

The proven theorem allows us to significantly (by two orders of magnitude) 

reduce the size of the adjacency matrix. To represent it, it is enough to leave two 

vectors, one of which will contain the number of the element in the row of the 

matrix M, from which a continuous unit substring begins, the other - the number of 

unit elements of this substring. In real unification programs, more memory is spent 

on the representation of integers that are elements of vectors than on the bit 

representation of the elements of the matrix M. At the same time, the memory 

savings are greater, the more complex the program is represented by a matrix, since 

in this case a very large number of zeros are excluded elements. 

When presenting the essence of the proposed unification algorithm, we will, 

however, use the adjacency matrix itself, leaving the details of its effective 

implementation in a specific programming language outside the scope of the 

presentation of the algorithm. 

A positive property of the adjacency matrix is that it quite completely 

describes the structure of the program. This makes it possible to say that to design a 

partial unification algorithm, it is sufficient to use as initial data only two adjacency 

matrices corresponding to the input terms of the programs s and t. 

Another positive property of the matrix M is the ability to represent a large 

part of the axioms of the equivalent transformation of programs as properties of 

operations of any particular programming language by a pair of such matrices. In 

software implementation, each axiom can be represented by a two-dimensional 

array of size 2xN, where N is the maximum of the lengths of the terms of the left 

and right parts of the transformation axiom. 

The algorithm is built on the basis of an evaluation function that determines, 

from fragments of rows of matrix M, the measure of similarity of subterms as 

classifying them to known types of comparison: 

- classic highlighting of the unifier, 

- selection of a unified frame, 

- highlighting terms of software tools. 

The PROMPT scoring function works as follows. 

Let the adjacency matrix Ms correspond to the program term s, and the matrix 

Mt - to the term t. 

0) If the algorithm is running for the first time, go to 1, otherwise go to 8. 

1) A cycle of viewing the column names of the matrix Mt relative to the 

matrix Ms is organized in order to search for the first matching names, excluding 

names corresponding to completely zero rows. 

2) If none of the names Ms matches any of the names Mt, then the output of 

the function is “failure,” which indicates the incomparability of the terms. 

3) Let two equal elements fs, from the matrix Ms, and ft, from the matrix Mt 

(fs = ft), be found. 



4) For these elements, the length of the string of names is calculated, which 

correspond to the child vertices of the vertices fs and ft, and also sequentially 

coincide in the matrices Ms and Mt. Let this be a number equal to n. Let further the 

number of ones in the lines corresponding to fs and ft be ms and mt, respectively. 

5) If n = ms = mt, then the output of the function for a specific current 

subterm will be “true”, which indicates the complete unification of the subterms of 

the terms s and t. 

6) If ms > mt or mt > ms , the possibility of selecting a framework is signaled, 

which will be a term consisting of the names of the columns of the adjacency 

matrix (in this case, any: Ms or Mt ); The output of the function for the current 

subterms is “partial matching”. 

7) If all rows of matrices Ms and Mt have been viewed, complete the 

algorithm with the possibility of subsequent launch, otherwise go to step 1. 

8) Output the previously found function value for the current compared 

subterms. 

A feature of this evaluation function algorithm is the preview and comparison 

of two matrices with the “marking” of vertices as the main functions (standing at 

the beginning of a local subterm) of complex terms, which are attributed to the 

comparability or incomparability of each specific subterm with all others. Thus, 

classes of comparability of terms are formed. Repeated calls to the PROMPT 

function make it possible to obtain all the necessary information about the 

comparability of any subterm with others. 

Using the PROMPT function greatly simplifies the task of further partial 

unification of terms. The main algorithm must now implement the following three 

components: 

- coordination of program variables and variables entered during comparison, 

- synthesis of the generalized resulting structure of the program, 

- formation of substitutions according to the condition G(p) < G(s) + G(t). 

The partial unification algorithm that implements the above functions is as 

follows. 

 

unify+ (s, t) => (unifiable: boolean , 

p: program term,,,b: substitutions) 

begin 

{ Formation of adjacency matrices Ms and Mt based on 

terms of input programs s and t } 

Matrix_Forming (s, t, Ms, Mt); 

{ First PROMPT call } 

PROMPT(0, Ms , Mt ); 

  Let n be the length of the path in the graph 

to the current terminal vertex 

<List of unprocessed vertices> <- 

All names of zero rows of matrices Ms, Mt; 

fi <- pop _from_end(<List of unprocessed vertices> ); 

i <- n; 



if Instrumentary(p,,,b, Ms , Mt, fi) then 

begin 

return (“true”, p,,,b); 

Stop; 

end 

i <- 0; 

<List of unprocessed vertices> <- 

All names of non-zero rows of matrices Ms, Mt; 

fi <- pop _from_first(<List of unprocessed vertices> ); 

Frame_result = “failure”; 

if Frame(p,,,b, Ms , Mt, fi) = “failure” then 

begin 

return (“failure”, 0, 0, 0, 0); 

Stop; 

end 

else 

if Length (s) + Length (t) < Length (p) then 

return (“partial comparability”, p,,,b); 

else 

return (“failure”, 0, 0, 0, 0); 

Stop; 

end 

 

recursive procedure Instrumentary( p,,,b, Ms , Mt, fi) ; 

{Stage of software tools selection} 

begin 

if PROMPT(fi, Ms , Mt ) = “true” then 

begin 

i <- i - 1; 

if i = 0 then return (“true”, p,,,b); 

fj = parent(fi); 

  if Instrumentary(p,,,b, Ms , Mt, fj) = “true” then 

  (p,,,b, Ms , Mt, fi) <- UNION (Result (fj) );  

  else 

begin 

{Take the next one from the raw} 

fi <- pop _from_end(<List of unprocessed vertices> ); 

Instrumentary(p,,,b, Ms , Mt, fi) ; 

end 

end 

else return (“failure”,0,0,0,0,0,0); 

end 

 

recursive procedure Frame ( p,,,b, Ms , Mt, fi) ; 



{Frame assembly stage} 

begin 

if PROMPT(fi, Ms , Mt ) = “true” then 

begin 

i <- i + 1; 

fj = subnodes(fi); 

  if Frame(p,,,b, Ms , Mt, fj) = “true” then 

begin 

Frame_result = “partial comparability”; 

   (p,,,b, Ms , Mt, fi) <- UNION (Result (fj) );  

end 

  else 

begin 

{Take the next one from the raw} 

fi <- pop _from_first(<List of unprocessed vertices>); 

Frame(p,,,b, Ms , Mt, fi) ; 

end 

end 

else return (“failure”,0,0,0,0,0,0); 

end 

 

The algorithm consists of three functions: the main one - unify, and two 

recursive functions Instrumentary and Frame, designed respectively for selecting 

instruments and assembling frames. 

Here is a list of auxiliary functions used when writing the algorithm: 

PROMPT - previously described evaluation function, 

pop_from_end - selection of the next, possibly unprocessed during earlier 

calls of the Instrumentary and Frame functions, the top of the program term tree, 

starting from the end of the list of names of the adjacency matrix, 

pop_from_first - the same thing, starting from the beginning of the list of 

adjacency matrix names, 

Length - function for calculating the length of a program term, 

parent - function for calculating the name of the ancestor node for a given 

node of the term tree, 

subnodes - function for calculating the names of descendant vertices for a 

given node of the term tree, 

UNION - a procedure for combining the results of processing nodes at 

different levels of recursion; its functions include combining substitutions and 

fragments of the resulting program term with decoupling of program variables. 

In other words, the algorithm works as follows. 

If the current term and all its descendants up to the terminal vertices, 

represented in the adjacency matrices by zero rows, are completely unified, but the 

external term is not, then a software toolkit is formed. If, in addition, the external 

term of the root level is unified, then the programs are completely unified. 



If several (possibly one) levels of a term are unified, but terms of a deeper 

level are not unified, a software framework is formed. 
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Fig.3. Comparative Difficulty Characteristics 
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Fig.4. Characteristics of complexity when using axioms 

 

 

At the end of the algorithm, its result is checked to satisfy the rule G(p) < G(s) 

+ G(t). 

For each case of incomparability, an appeal to the axioms of equivalent 

transformation is used. If such a transformation is possible, it is performed, 



otherwise a final decision on incomparability is made. This item is assumed to be 

included in the Frame and Instrumentary functions. 

In the graph, an experimental test of the considered algorithms, carried out on 

an IBM-486 DX4 PC (66 MHz) in the C programming language, based on average 

values, showed the following indicators of the time complexity of the algorithms 

(Fig. 3, 4). 

The vertical axis shows the running time of the algorithms in seconds, and the 

horizontal axis shows the number of connected variables in the terms they process. 

The graph marked with a circle corresponds to the characteristics of the modified 

Robinson algorithm, with a square - to the modified Hewitt algorithm, and with a 

triangle - to the proposed matrix algorithm. The characteristics presented in the 

graph are characteristics of real programs and therefore largely reflect the 

characteristics of specific implementations. In addition, the figure shows the 

characteristics of the matrix algorithm, in which, like the Robinson and Hewitt 

algorithms, equivalent transformations based on the properties of program 

operators were not used. When using an equivalent transformation, the complexity 

of the matrix algorithm is almost the same as the complexity of the modified Hueth 

algorithm. 

Nevertheless, the given characteristics make it possible to see the approximate 

order of complexity of the algorithms and the feasibility of using a matrix approach 

with partial unification of program terms. 
 


